Return of calcium: manipulating intracellular calcium to prevent cardiac pathologies.
نویسندگان
چکیده
H eart failure resulting from ischemia reperfusion and other forms of injury is characterized by a variety of pathological manifestations, including cellular hypertrophy, contractile dysfunction, and electrical instability. Abnormal calcium signaling leading to cytoplasmic calcium overload is thought to be a critical and perhaps common mechanism underlying these abnormalities. Since the 1980s, it has been known that inhibition of cardiac metabolism leads to increased intracellular calcium (1), and that pharmacologic therapies aimed at blocking calcium entry into cells not only reduce cellular injury (2), but also decrease the frequency of ventricular arrhythmias (3). More recently, studies using targeted genetic approaches have demonstrated that manipulating cardiomyocyte calcium handling can prevent or reduce the progression of hypertrophy and cardiac dysfunction associated with aging, ischemia, reperfusion, and pressure overload [see Sobie et al. (4) for review] but have also raised concerns about the potential for worsening heart failure (5, 6). In a recent issue of PNAS, del Monte et al. (7) use a genetic strategy to modify cellular calcium handling during ischemia by overexpressing sarcoplasmic reticulum ATPase via an adenovirus vector. Similar to pharmacologic strategies for reducing cytosolic free calcium, such as calcium channel blockers and beta-blockers, SERCA overexpression not only reduces infarct size and preserves cardiac function, but also reduces arrhythmia frequency. The success of this approach once again supports the long-held notion that calcium cycling is an important therapeutic target to prevent the deleterious consequences of ischemia reperfusion injury.
منابع مشابه
A Study on the Effects of Modulation of Intracellular Calcium on Excisional Wound Healing in Rabbit
An in vitro study on the role of intracellular calcium ions in healing of excisional wound in rabbit was undertaken. We employed two drugs namely, glibenclamide and nitroglycerin that are topically applied in vivo to modulate the activity of intracellular calcium. Our model consisted of a 15 ´ 15 mm excisional wound. Seven groups of New Zealand rabbits were used. The first three groups served a...
متن کاملP-94: The Effect of Calcium Ionophore A23187 and Ethanol on Parthenogenetic Activation of Mouse Oocytes in Presence of Hydrostatic Pressure and Cy-tochalasin B
Background: Parthenogenetic activation of mammalian oocytes using artificial stimuli is commonly used in various reproductive bio-techniques. Calcium ionophore is known to elevate intracellular calcium levels in the cytoplasm of oocytes through the influx of calcium from extracellular spaces. Ethanol promotes a single intracellular Ca2+ increase of greater and longer amplitude than the initial ...
متن کاملInhibition of CatSper and Hv1 Channels and NOX5 Enzyme Affect Progesterone-Induced Increase of Intracellular Calcium Concentration and ROS Generation in Human Sperm
Background: Normal sperm function depends on appropriate intracellular calcium (Cai2+) and reactive oxygen species (ROS) levels. Calcium activates NADPH oxidase-5 (NOX5) that leads to ROS generation. The calcium channel of sperm (CatSper) is activated by progesterone and intracellular alkalization. Herein, the interactive role of CatSper, Hv1 channels, and NOX5 enzyme on Cai2+ and ROS generatio...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 16 شماره
صفحات -
تاریخ انتشار 2004